Complete Controllability of Continuous - Time Recurrent Neural Networks ∗
نویسندگان
چکیده
This paper studies controllability for the class of control systems commonly called (continuous-time) recurrent neural networks. It is shown that, under a generic condition on the input matrix, the system is controllable, for every possible state matrix. The result holds when the activation function is the hyperbolic tangent.
منابع مشابه
Recurrent Neural Networks: Some Systems-Theoretic Aspects∗
This paper provides an exposition of some recent research regarding system-theoretic aspects of continuous-time recurrent (dynamic) neural networks with sigmoidal activation functions. The class of systems is introduced and discussed, and a result is cited regarding their universal approximation properties. Known characterizations of controllability, observability, and parameter identifiability...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملFurther results on controllability of recurrent neural networks 1
This paper studies controllability properties of recurrent neural networks. The new contributions are: (1) an extension of a previous result to a slightly diierent model, (2) a formulation and proof of a necessary and suucient condition, and (3) an analysis of a low-dimensional case for which the hypotheses made in previous work do not apply.
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کامل